ear Time-Invariant Systems 69 Introduction 69 The Representation of Signals in Terms of Impulses 70 Discrete-Time LTI Systems: The Convolution Sum 75 Continuous-Time LTJ Systems: The Convolution Integral 88 Properties of Linear Time-Invariant Systems 95 Systems Described by Differential and Difference Equations 101 Block-Diagram Representations of LTI Systen~sDescribed by Differential Equations 111 Singularity Functions 120 Sumniary 125 Problems 125 ~ r i e rAnalysis for Continuous-Time jnals and Systems 161 4.0 Introduction 161 4.1 The Response of Continuous-Time LTI Systems to Complex Exponentials 166 4.2 Representation of Periodic Signals: The Continuous-Time Fourier Series 168 4.3 Approximation of Periodic Signals Using Fourier Series arid the Convergence of Fourier Series 179 4.4 Representation of Aperiodic Signals: The Continuous-Time Fourier Transforni 186 4.5 Periodic Signals and the Continuous-Time Fourier Transform 196 4.6 Properties of the Continuous-Time Fourier Transform 202 4.7 The Convolutio~iProperty 212 4.8 The Modul ition Propcrty 219 4.9 Tables of Fourier Properties and of Basic Fourier Transform and Fourier Scries Pairs 223 4.10 The Polar Representation of Continuous-Time Fourier Transforms 226 4.1 1 The Frequency Response of Systems Characterized by Linear Constant-Coefiicient Difkrential Equations 232 4.12 First-Order and Second-Order Systems 240 4.13 Summary 250 Problems 2.51 viii Contents Fourier Analysis for Discrete-Time Signals and Systems 291 5.0 Introduction 291 5.1 The Response of Discrete-Time LTI Systems to Complex Exponentials 293 5.2 Representation of Periodic Signals: The Discrete-Time Fourier Series 294 5.3 Representation of Aperiodic Signals: The Discrete-Time Fourier Transform 306 5.4 Periodic Signals and the Discrete-Time Fourier Transform 314 5.5 Properties of the ~ i s c r e t e - ~ i m eFourier Transform 321 5.6 The Convolution Property 327 5.7 The Modulation Property 333 5.8 Tables of Fourier Properties and of Basic Fourier Transform and Fourier Series Pairs 335 5.9 Duality 336 5.10 The Polar Representation of Discrete-Time Fourier Transforms 5.11 The Frequency Response of Systems Characterized by Linear Constant-Coefficient Difference Equations 345 5.12 First-Order and Second-Order Systems 352 5.13 Summary 362 Problems 364 Filtering 397 6.0 lntroduction 397 6.1 Ideal Frequency-Sclcclive Filters 401 6.2 Nonideal Frequency-Selective Filters 406 6.3 Examples of Continuous-Time Frequency-Selective Filters Described by Differential Equations 408 6.4 Examples of Discrete-Time Frequency-Selective Filters Described by Difference Equations 413 6.5 The Class of Butterworth Frequency-Selective Filters 422 6.6 Summary 427 Problems 428 Contents Contents Preface xiii Introduction r Signals and Systems 7 Introduction 7 Signals 7 Transformations of the Independent Variable 12 Basic Continuous-Time Signals 17 Basic Discrete-Time Signals 26 Systems 35 Properties of Systems 39 Summary 45 Problems 45 Applications of Digital Signal Processing OPPENHEIM,WILLSKY,with YOUNG Signals and Systetns OPPENHEIMand SCHAFERDigital Signal Processing RABINERand GOLD Theory and Applications oJ Digital Signal Processing RABINERand SCIIAFERDigital Processing of Speech Signals ROBINSONand TREITELGeophysical Signal Analysis TRIBOLETSeismic Applications of Homomorphic Signal Processing
Speech Enhancement MCCLELLANand RADER Number Theory in Digital Signal Processing OPPENHEIM,ED. Oppenlleit~l,Editor ANDREWSand HUNT Digital Image Restoration BRIGHAM The Fast Fourier Transform BURDIC Underwater Acoustic Svstenl Analysis CASTI.EMANDigital ltrrage Processing CROCIIIEREand RABINER Multirate Digital Signal Processing DUDGEONand MERSEREAU Multiditnensional Digital Signal Procrssir~g HAMMING Digital Filters, 2e. PHENTICE-HALL SIGNAL PROCESSING SERIES Alan V.